![Sept_6_X9_Blend_131-171_print](http://astroengine.files.wordpress.com/2017/09/sept_6_x9_blend_131-171_print.jpg?w=840)
This morning, the sun erupted with the most powerful solar flare in a decade, blasting the Earth’s upper atmosphere with energetic X-ray and extreme ultraviolet (EUV) radiation.
The flare was triggered by intense magnetic activity over an active region called AR2673 that has been roiling with sunspot activity for days, threatening an uptick in space weather activity. As promised, that space weather brought an explosive event at 1202 UTC (8:02 a.m. PT) that ionized the Earth’s upper atmosphere and causing a shortwave radio blackout over Europe, Africa and the Atlantic Ocean, reports Spaceweather.com.
![blackoutmap](http://astroengine.files.wordpress.com/2017/09/blackoutmap.jpg?w=840)
The powerful X9.3-class flare came after an earlier X2.2 blast from the same active region, a significant flare in itself. X-class flares are the most powerful type of solar flares.
The electromagnetic radiation emitted by flaring events affect the Earth’s ionosphere immediately, but now space weather forecasters are on the lookout for a more delayed impact of this eruption.
![x-class-solar-flare](http://astroengine.files.wordpress.com/2017/09/x-class-solar-flare.jpg?w=840)
Solar flares can create magnetic instabilities that may launch coronal mass ejections (CMEs) — basically vast magnetized bubbles of energetic solar plasma — into interplanetary space. Depending on the conditions, these CMEs may take hours or days to reach Earth (if they are Earth-directed) and can generate geomagnetic storms should they collide and interact with our planet’s global magnetic field.
Update: According to observations gathered by NASA’s STEREO-A spacecraft, the flare did produce a CME and space weather forecasters are determining its trajectory to see whether it is Earth-directed. Also, NASA has produced a series of beautiful images from the SDO, showing the flare over a range of frequencies.